Articles

Highly Diastereoselective Alkylation of Chiral Tin(II) Enolates onto Cyclic Acyl Imines. An Efficient Asymmetric Synthesis of Bicyclic Alkaloids Bearing a Nitrogen Atom Ring Juncture

Yoshimitsu Nagao, ${ }^{, 12}$ Wei-Min Dai, ${ }^{1 a}$ Masahito Ochiai, ${ }^{1 a}$ Shigeru Tsukagoshi, ${ }^{1 \mathrm{~b}}$ and Eiichi Fujita ${ }^{1 \mathrm{C}}$
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan; Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Toshima-ku, Tokyo 170, Japan; and Osaka University of Pharmaceutical Sciences, 10-65 Kawai 2-chome, Matsubara 580, Japan

Received July 6, 1989

Abstract

Asymmetric alkylation onto 5-acetoxy-2-pyrrolidinone ($\mathbf{5}, n=1$) in THF employing chiral tin(II) enolates $\mathbf{4 a}, \mathbf{b}, \mathbf{e}, \mathbf{f}$ obtained from treatment of the corresponding 3 -acyl-4(S)- or -4(R)-isopropyl-1,3-thiazolidine-2-thiones $3 \mathbf{a}, \mathbf{b}, \mathbf{e}, \mathbf{f}$ with $\mathrm{Sn}\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)_{2}$ and N -ethylpiperidine in THF afforded the corresponding $\mathrm{C}(5)$-alkylated 2 -pyrrolidinones $6,7,12$, and 13 in $67-92 \%$ yields and in a highly diastereoselective manner [$91-97 \%$ diastereomer excess (de)]. Similar alkylation of 4 e onto 6 -acetoxy-2-piperidinone ($5, n=2$) gave the $\mathrm{C}(6)$-alkylated 2-piperidinone 14 in 63% yield and in 96% de. Complete enolization of $3 \mathrm{c}, \mathrm{d}, \mathrm{g}$ was achieved by employing 2 mol equiv of $\mathrm{Sn}\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)_{2}$ and 2.2 mol equiv of N-ethylpiperidine at -5 to $0^{\circ} \mathrm{C}$ in THF. Subsequently, diastereoselective alkylation onto cyclic acyl imines derived from 5 ($n=1$ and 2) in situ using the tin (II) enolates $4 \mathbf{c}, \mathrm{~d}, \mathrm{~g}$ gave the chiral alkylated lactams $8-11$ and 15 in $57-73 \%$ yields and in 91-98\% de. A six-membered chelated transition state (e.g., 16) is proposed for the highly diastereoselective alkylation with various chiral tin(II) enolates onto 5 ($n=1$ and 2). Simplified reductive annulation of 8-11 and 15 with LiAlH_{4} proceeded smoothly to furnish optically pure $(-)$-trachelanthamidine (17a), two kinds of indolizidine type compounds $17 \mathrm{~b}, \mathrm{c}$, (-)-epilupinine (17d), and $(+)$-epilupinine (21) together with the corresponding hydrogenolysis products $19 \mathrm{a}-\mathrm{d}$ and 23 , respectively. Chiral lactam 6 was readily converted to carboxylic acid 26 , the synthetic precursor of (S)-homoproline 27 , and the chiral diester 31, which could be exploited for the asymmetric synthesis of various chiral pyrrolizidine alkaloids via 32.

Bicyclic alkaloids possessing pyrrolizidine, ${ }^{2}$ indolizidine, ${ }^{3}$ and quinolizidine ${ }^{3}$ skeletons are widely represented in various plant families, ${ }^{4}$ and the tumor inhibitory activities of the pyrrolizidine alkaloids have been recognized for the past few decades. ${ }^{4,5}$ The diversity that pyrrolizidine alkaloids exhibit in both their structures and biological activities has stimulated a great deal of interest in accomplishing the total syntheses of these compounds. ${ }^{6}$ However, the synthesis of optically active pyrrolizidine alkaloids

[^0]has been a recent development, dating only from the beginning of the past decade. ${ }^{7}$ Most of the asymmetric syntheses of pyrrolizidine alkaloids published have been effected by employing chiral building blocks converted from L-proline derivatives, (R) - or (S)-malic acid, and carbohydrates, respectively. The roundabout ways used in the asymmetric synthesis of pyrrolizidine alkaloids usually affect the efficiency of the synthetic routes, resulting in low overall yields. The deficiency of good synthetic routes to pyrrolizidine alkaloids also gives rise to the problem of low selectivity when diastereomers are formed. In a recent preliminary communication, ${ }^{7}$ we reported an efficient and general asymmetric synthesis of pyrrolizi-dine-, indolizidine-, and quinolizidine-alkaloid ring systems based on a highly diastereoselective alkylation of chiral tin (II) enolates onto cyclic acyl imines. Here, we describe the details of the simple construction procedure for these 1 -azabicyclic alkaloidal skeletons and related asymmetric induction methods.

Results and Discussion

$4(S)$ - or $4(R)$-isopropyl-1,3-thiazolidine-2-thione (4(S)or $4(R)$-IPTT), 1 or 2 , first prepared by us, ${ }^{8}$ has been used as an excellent chiral auxiliary in various chiral recognition capacities. ${ }^{7-9}$ Typically, the tin(II) enolates derived from

[^1]Scheme I ${ }^{\text {a }}$

$3 \mathbf{a}-\mathbf{g}$

$1 R^{1}=i-P r, R^{2}=H$
$\underline{2} R^{1}=H, R^{2}=i-P r$

5

16
${ }^{a}$ a, method A: $\mathrm{NaH}, \mathrm{R}^{3} \mathrm{CH}_{2} \mathrm{COCl}, \mathrm{THF}$, room temperature; method B: $\mathrm{R}^{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{DCC}-\mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature. b, Sn $\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)_{2}, N$-ethylpiperidine, THF. c, 5 (1.5 mol equiv), THF, -5 to $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

3 -acyl-4(S)-IPTTs have been successfully exploited in highly diastereoselective alkylations onto 4 -acetoxy-2-azetidinones ${ }^{9 a, b, f}$ and α, β-unsaturated aldehydes. ${ }^{8}$ Equation 1 shows a two-step sequence for the chiral synthesis of

(9) (a) Nagao, Y.; Kumagai, T.; Tamai, S.; Abe, T.; Kuramoto, Y.; Taga, T.; Aoyagi, S.; Nagase, Y.; Ochiai, M.; Inoue, Y.; Fujita, E. J. Am Chem. Soc. 1986, 108, 4673. (b) Nagao, Y.; Kumagai, T.; Abe, T.; Ochiai, M.; Taga, T.; Machida, K.; Inoue, Y. J. Chem. Soc., Chem. Commun. 1986, 602. (c) Nagao, Y.; Hagiwara, Y.; Hasegawa, Y.; Ochiai, M.; Inoue, T.; Shiro, M.; Fujita, E. Chem. Lett. 1988, 381. (d) Nagao, Y.; Hagiwara, Y.; Tohjo, T.; Hasegawa, Y.; Ochiai, M.; Shiro, M. J. Org. Chem. 1988, 53, 5983. (e) Nagao, Y.; Dai, W.-M.; Ochiai, M. Tetrahedron Lett. 1988 29, 6133. (f) Nagao, Y.; Abe, T.; Shimizu, H.; Kumagai, T.; Inoue, Y. J. Chem. Soc., Chem. Commun. 1989, 821. (g) Nagao, Y.; Dai, W.-M.; Ochiai, M.; Shiro, M. J. Org. Chem. 1989, 54, 5211.

Table I. Preparation of Compounds 3

entry	compd	method $^{\text {a }}$	compd ${ }^{\text {b }}$	isolated yield, \%	$\begin{gathered} {[\alpha]^{22} \mathrm{D}^{d}(c) \text { in }} \\ \mathrm{CHCl}_{3} \end{gathered}$
1	1	A	3a ${ }^{8,98}$	94	+448.9 (0.51)
2	1	B	$3 \mathrm{~b}^{\text {c }}$	88	+315.8 (0.60) ${ }^{\text {e }}$
3	1	A	3c	95	+366.5 (0.57) ${ }^{8}$
4	1	A	3d	96	+348.9 (0.72)
5	2	A	3 e	100	-442.1 (0.62)
6	2	A	$3 \mathrm{f}^{9 b}$	94	-254.9 (0.65) ${ }^{\text {g }}$
7	2	A	3 g	96	-342.0 (0.64) ${ }^{\prime}$

${ }^{a}$ Method A: prepared by reaction of $4(S)$ - or $4(R)$-IPTT sodium salt with the corresponding acyl chloride in THF at room temperature. Method B: prepared by dehydrative condensation between 4(S)-IPTT and the carboxylic acid in the presence of DCC-DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. ${ }^{b}$ Yellow oil. ${ }^{\text {c }}$ Yellow prisms, mp $80.5-81.5^{\circ} \mathrm{C}$ (recrystallized from $\mathrm{Et}_{2} \mathrm{O}$-hexane). ${ }^{d}[\alpha]^{22} \mathrm{D}$ is measured in degrees. ${ }^{e}$ Recorded at $25^{\circ} \mathrm{C}$. ${ }^{f}$ Recorded at $23^{\circ} \mathrm{C}$. ${ }^{8}$ Recorded at $18^{\circ} \mathrm{C}$.
bicyclic alkaloids bearing a nitrogen atom ring juncture. It consists of a highly diastereoselective alkylation of chiral tin(II) enolates onto cyclic acyl imines ${ }^{10}$ followed by reductive annulation of the resultant cyclic imines. ${ }^{11}$
5 -Acetoxy-2-pyrrolidinone (5, n=1) ${ }^{12}$ or 6-acetoxy-2piperidinone (5, $n=2)^{13}$ was considered to be a suitable precursor for the desired cyclic acyl imine as represented

[^2]Table II. Highly Diastereoselective Alkylation of Compounds 5 with Chiral Tin(II) Enolates 4

entry	enolate	compd ${ }^{\text {a }}$	product	isolated yield, ${ }^{\text {b }}$ \%	diastrmer excess, ${ }^{\text {c }} \%$	mp, ${ }^{\circ} \mathrm{C}$	$[\alpha]^{22}{ }^{\text {b }}$ (c) in CHCl_{3}
1	4a, $\mathrm{R}^{3}=\mathrm{H}$	$n=1$	6	67	94	oil	+356.9 (1.11)
2	4b, $\mathrm{R}^{3}=\mathrm{SPh}$	$n=1$	7	92	91	138-140 ${ }^{\text {d }}$	+366.8 (0.44) ${ }^{\text {i }}$
3	$4 \mathrm{c}, \mathrm{R}^{3}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}$	$n=1$	8	64	98	163-164 ${ }^{\text {e }}$	+447.2 (0.25)
4	4d, $\mathrm{R}^{3}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Cl}$	$n=1$	9	72	97	142-143.5 ${ }^{\text {f }}$	+416.3 (0.33) ${ }^{j}$
5	$4 \mathrm{c}, \mathrm{R}^{3}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}$	$n=2$	10	57	95	126.5-127.5	+407.8 (0.40)
6	$4 \mathrm{~d}, \mathrm{R}^{3}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Cl}$	$n=2$	11	73	91	97-988	+344.6 (0.57)
7	$4 \mathrm{e}, \mathrm{R}^{3}=\mathrm{H}$	$n=1$	12	66	94	oil	-359.3 (1.06)
8	4f, $\mathrm{R}^{3}=\mathrm{OCH}_{2} \mathrm{Ph}$	$n=1$	13	78	97	149-150 ${ }^{\text {e }}$	-405.6 (0.25)
9	$4 \mathrm{e}, \mathrm{R}^{3}=\mathrm{H}$	$n=2$	14	63	96	138.5-139.5 ${ }^{\text {g }}$	-393.3 (0.15) ${ }^{j}$
10	$4 \mathrm{~g}, \mathrm{R}^{3}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Cl}$	$n=2$	15	73	91	oil	-362.6 (0.58)

${ }^{a}$ A ca. 9:1 mixture of $5(n=1,2)$ and the corresponding 5 - or 6 -ethoxy compound was employed. ${ }^{b}$ Calculated based on 3 . ${ }^{c}$ Checked by HPLC analysis (see Experimental Section). ${ }^{d}$ Recrystallized from $\mathrm{Et}_{2} \mathrm{O}$-hexane. ${ }^{\boldsymbol{e}}$ Recrystallized from CHCl_{3}-hexane. ${ }^{\text {/ Recrystallized from }}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane. ${ }^{8}$ Recrystallized from EtOAc-hexane. ${ }^{h}[\alpha]^{22}$ D is measured in degrees. ${ }^{i}$ Recorded at $25{ }^{\circ} \mathrm{C}$. ${ }^{j}$ Recorded at $14{ }^{\circ} \mathrm{C}$.
in eq 1. Thus, the alkylations of 5-acetoxy-2-pyrrolidinone and 6-acetoxy-2-piperidinone with chiral tin(II) enolates 4 were carried out (Scheme I). 3-Acyl-4(S)- or 3-acyl-4(R)-IPTT derivatives $3 a^{8,9 g}$ and $3 c-\mathrm{g}$ were readily prepared in $94-100 \%$ yields by reaction of $4(S)$ - or $4(R)$-IPTT sodium salt, derived from 1 or 2 and NaH in THF, with the corresponding acyl chloride (method A). Compound $\mathbf{3 b}$ was obtained through dehydrative condensation between 1 and (phenylthio)acetic acid in the presence of DCC and DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in 88% yield (method B, Table I). Reaction of tin(II) enolate $4 \mathbf{a},{ }^{8,9 a, 8}$ formed by treatment of 3 a with tin(II) trifluoromethanesulfonate (1.3 mol equiv) ${ }^{14}$ and N-ethylpiperidine (1.5 mol equiv) ${ }^{14}$ in THF (-50 to $\left.-40^{\circ} \mathrm{C}, 3 \mathrm{~h}\right),{ }^{9 \mathrm{a}}$ with 5 -acetoxy-2-pyrrolidinone ($5, n=1$, 1.5 mol equiv) in THF (-5 to $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$) gave the C(5)alkylation product 6 in 67% yield and in a very highly diastereoselective manner [94% diastereomer excess (de), Scheme I and entry 1 in Table II]. The antipodal compound of 6,12 , was similarly obtained from tin(II) enolate 4e and 5-acetoxy-2-pyrrolidinone. Reaction of the tin(II) enolates $\mathbf{4 b}$ and 4 fenerated from 3 -(heteroatom-substituted acetyl)-4(S)- [or 4(R)]-IPTT (3b,f) by treatment with tin(II) trifluoromethanesulfonate (1.3 mol equiv) and N-ethylpiperidine (1.5 mol equiv) in THF ($-78{ }^{\circ} \mathrm{C}, 30$ \min), ${ }^{9 \mathrm{~b}}$ with 5 -acetoxy-2-pyrrolidinone ($5, n=1,1.5 \mathrm{~mol}$ equiv) in THF (-5 to $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$) afforded the corresponding $\mathrm{C}(5)$-alkylation products 7 and 13 in 92% and 78% yields and in 91% and 97% de, respectively (Scheme I and entries 2 and 8 in Table II). Similar diastereoselective alkylation onto 6-acetoxy-2-piperidinone ($5, n=2,1.5 \mathrm{~mol}$ equiv) with chiral tin(II) enolate 4e furnished C(6)-alkylation product 14 in 63% yield and in 96% de (Scheme I and entry 9 in Table II). Encouraged by our success in the asymmetric alkylations mentioned above, we attempted the alkylations employing chiral tin(II) enolates 4 c and 4 d , which were required for the syntheses of our target compounds, as depicted in eq 1. When the enolization conditions used for compound 3a were adopted for $3-\omega$-chloroacyl-4(S)-IPTT derivatives 3c and 3d, the alkylations onto 5 -acetoxy-2-pyrrolidinone ($5, n=1$) or 6 -acetoxy-2-piperidinone ($5, n=2$) were found to be inefficient, resulting in lower conversions of 3 c and 3 d to the desired alkylation products. After several trials, it was found that the tin(II) enolates $\mathbf{4 c}$ and 4 d could be efficiently generated by employing 2 mol equiv of tin (II) trifluoromethanesulfonate and 2.2 mol equiv of N-ethylpiperidine in THF at -5 to $0^{\circ} \mathrm{C}$ for $3-4 \mathrm{~h}$. Thus, the alkylations of 5 -acetoxy-2-pyrrolidinone (1.5 mol equiv) and 6 -acetoxy-2-piperidinone (1.5 mol equiv) with 4 c and 4 d in THF (-5 to $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$) afforded the corresponding

[^3]Scheme II a

$$
a \quad m=n=1 ; \quad b \quad m=2, \quad n=1 ;
$$
$$
c m=1, \quad n=2 ; \quad d m=n=2
$$

${ }^{\mathrm{a}} \mathrm{a}, \mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 5 \mathrm{~min}$ then reflux, $2 \mathrm{~h} . \mathrm{b}, \mathrm{AcCl} / \mathrm{Et}_{3} \mathrm{~N}$, THF, room temperature.
$C(5)$ - and $\mathrm{C}(6)$-alkylation products $8-11$ in $57-73 \%$ yields and in $91-98 \%$ de, respectively (Scheme I and entries 3-6 in Table II). The antipodal compound of 11,15 , was also obtained from the alkylation of 6 -acetoxy-2-piperidinone with tin (II) enolate 4 g in the same manner. In all cases, the optically pure major alkylation products $6-15$ were readily obtained through chromatographic separation on a silica gel column. The absolute configurations of compounds $6,8,11$, and 14 were established following chemical conversion to the compounds (S)-(+)-5-oxo-2pyrrolidineacetic acid (26), (-)-trachelanthamidine (17a), $(-)$-epilupinine ($\mathbf{1 7 d}$), and (R)-(-)-6-oxo-2-piperidineacetic acid (36b), respectively (vide infra). The stereochemistry of compounds $7,9,10$, and 13 was tentatively assigned on the basis of the similarity of mechanistic considerations for 16 to those for the compounds mentioned above. The six-membered chelated transition state 16 can be invoked to rationalize the stereochemical outcome, regardless of the ring size ($n=0-2$ in 16) of the cyclic acyl imines. ${ }^{7,9 \mathrm{a}, \mathrm{b}, f}$

Subsequently, we designed a much simplified reductive annulation of 8-11 by employing LiAlH_{4} to afford the chiral bicyclic alkaloids 17 a -d (eq 1 and Scheme II). Thus, the optically pure alkylation products $8-11$ were treated with 4 mol equiv of LiAlH_{4} in THF, first at $0^{\circ} \mathrm{C}$

${ }^{a} \mathrm{a}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, room temperature, $30 \mathrm{~min}\left(6 \rightarrow \mathbf{2 5 a}, 95 \%\right.$); b, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{EtOH}$, room temperature, $12 \mathrm{~h}(6 \rightarrow \mathbf{2 5 b}, 77 \%$) $\mathbf{c}, 3 \mathrm{~N}$ $\mathrm{NaOH}-\mathrm{MeOH}$, room temperature, $18 \mathrm{~h}\left(25 a \rightarrow 26,64 \%\right.$); d, $\mathrm{NaH}-\mathrm{MeI}$, DMF, room temperature, $6 \mathrm{~h} ; \mathrm{CH}_{2} \mathrm{~N}_{2}$ (49%); e, Lawesson's reagent, toluene, $105{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}\left(\mathbf{2 5 b} \rightarrow \mathbf{2 9}, 87 \%\right.$); f, $\mathrm{Et}_{3} \mathrm{OBF}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature, $3 \mathrm{~h} ; \mathrm{NaBH} 3 \mathrm{CN}, \mathrm{MeOH}-\mathrm{AcOH}$ ($92: 8$), room temperature, 3 h ; $\mathrm{g}, \mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{EtOH}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, room temperature, $20.5 \mathrm{~h}(29 \rightarrow 31,83 \%)$.

Table III. Reductive Annulation of Compounds 8-11 and
$15^{\text {a }}$

entry	substrate	product (yield, \%)	byproduct (yield, \%)	$\begin{gathered} {[\alpha]^{22} \mathrm{D}^{d}(c) \text { in }} \\ \text { EtOH } \end{gathered}$
1	8	17a (44)	19a (10)	17a, -13.7 (1.22) ${ }^{\text {e }}$
2	9	17b (41)	19b (22)	17b, -25.9 (1.16)
3	10	17c (69)	19c (tr)	17c, -53.4 (1.18)
4	11	$17 \mathrm{~d}(61)^{\text {b }}$	19d (18)	17d, -30.5 (0.84)
5	15	21 (59) ${ }^{\text {c }}$	23 (17)	21, +31.2 (0.86)

${ }^{\text {a }}$ The auxiliary $4(S)$ - or $4(R)$-IPTT was recovered in $70-90 \%$ yields in all cases. ${ }^{b}$ Colorless needles (mp $76-76.5^{\circ} \mathrm{C}$) from hexane. ${ }^{c}$ Colorless needles ($\mathrm{mp} 78-79{ }^{\circ} \mathrm{C}$) from hexane. ${ }^{d}[\alpha]^{222}$ D measured in degrees. ${ }^{e}$ Recorded at $20^{\circ} \mathrm{C}$.
for 5 min to reduce the active amide moiety ${ }^{15}$ without epimerization at the active methine carbon and then under reflux for 2 h to achieve the reductive annulation. The desired bicyclic products $17 \mathrm{a}-\mathrm{d}$ were furnished directly, together with the corresponding hydrogenolysis byproducts 19a-d (Scheme II and Table III). No O-cyclization product, which had been anticipated was isolated from the reaction mixture. To confirm the presence of hydroxy and/or imino group(s) in the molecule, compounds 17a-d and $19 \mathrm{a}-\mathrm{d}$ were acetylated with $\mathrm{AcCl} / \mathrm{Et}_{3} \mathrm{~N}$, giving the corresponding monoacetyl derivatives $18 a-\mathbf{d}$ and diacetyl derivatives $20 \mathrm{a}-\mathrm{d}$ in good yields ($70-80 \%$), respectively. Similarly, the asymmetric alkylation product 15 was converted to 21 by reductive annulation together with the hydrogenolysis byproduct 23 (Scheme II and entry 5 in Table III). The synthesized compound $17 \mathrm{a}\{\geq 99 \%$ optically pure (op) based on the reported data: ${ }^{16}[\alpha]_{\mathrm{D}}-13.8^{\circ}$
(15) This reduction can be readily monitored by the disappearance of the original yellow color of the solution. Cf.: Nagao, Y.; Kawabata, K.; Seno, K.; Fujita, E. J. Chem. Soc., Perkin Trans. 1 1980, 2470.
(c 1.28, EtOH) \} proved to be (-)-trachelanthamidine, as evidenced by a comparison of its physical data with those of the authentic compound. Compounds 17 d and 21 were confirmed to be (-)- and (+)-epilupinine in a similar manner \{(+)-epilupinine (21), 97% op based on the literature data: ${ }^{17} \mathrm{mp} 76-78^{\circ} \mathrm{C}$ (petroleum ether), $[\alpha]^{17} \mathrm{D}+32^{\circ}$ ($\mathbf{c} 1.49, \mathrm{EtOH}$)]. Thus, this work presents the first example of an asymmetric synthesis of naturally occurring (+)-epilupinine.
The asymmetric alkylation product 6 also proved to be a very useful intermediate for 7a α-pyrrolizidine alkaloid synthesis as shown in Scheme III. Treatment of 6 with solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ in absolute MeOH at room temperature for 30 min afforded the methyl ester $25 a$ in 95% yield. Saponification of $25 a$ yielded (S)-(+)-5-oxo-2-pyrrolidineacetic acid (26$)^{18}$ in 64% yield. Methylation of compound 26 gave the known compound 28 in 49% unoptimized yield. Thus, the absolute configuration of $\mathrm{C}(5)$ in compound 6 was established to be S. Compound 26 has been converted, ${ }^{19}$ by its treatment with $\mathrm{Et}_{3} \mathrm{OBF}_{4}$ followed by reduction with NaBH_{4}, to ((S)-homoproline (27), which has been used as a chiral catalyst in an asymmetric aldol cyclization. ${ }^{20}$ As reported by Rüeger and Benn, ${ }^{21 a}$ the chiral

[^4]
Scheme IV ${ }^{a}$

${ }^{a} \mathrm{a}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, room temperature, 30 min ($14 \rightarrow 36 \mathrm{a}, 88 \%$); b, $2 \% \mathrm{NaOH}-\mathrm{MeOH}$, room temperature, $5 \mathrm{~h}(\mathbf{3 6 a} \rightarrow \mathbf{3 6 b}, 63 \%)$.
diester 31 has been prepared by N -alkylation of ethyl (S)-2-pyrrolidinylacetate (30), obtained via two different homologation methods from L-proline, with ethyl bromoacetate. The chiral diester 31 has been cyclized under equilibrium control conditions to form 32 , which has been used as a common intermediate in the synthesis of optically active 7a α-pyrrolizidine alkaloids such as (-)-trachelanthamidine (17a), ${ }^{21 \mathrm{a}}(-)$-isoretronecanol (33), ${ }^{\text {21a }}$

$33 R=H$
$34 \mathrm{R}=\mathrm{OH}$
$(-)$-supinidine (35), ${ }^{21 \mathrm{a}}$ and (-)-petasinecine (34). ${ }^{2 \mathrm{Lb}}$ We also succeeded in preparing the chiral diester 31 from 6 (Scheme III). Alcoholysis of 6 in the presence of solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ in absolute EtOH afforded the ethyl ester 25 b in 77% yield. Treatment of 25 b with 2,4 -bis(4 -methoxy-phenyl)-1,3-dithia-2,4-diphosphatane 2,4 -disulfide (Lawesson's reagent) ${ }^{22}$ in hot toluene furnished the thiolactam 29 in 87% yield. Reductive removal of the thiocarbonyl group in 29 was achieved by following the known procedures ${ }^{23}$ to produce ethyl (S)-2-pyrrolidinylacetate (30) which, without isolation, was treated with ethyl bromoacetate in the presence of solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in EtOH to afford the known chiral diester $31^{21 a}$ in 83% yield from 29 . The spectral data of compound 31 were identical with those of the authentic sample. Thus, we have established a new efficient synthetic route to optically active $7 \mathrm{a} \alpha-$ pyrrolizidine alkaloids. It is obvious that the chiral alkylation product 12 is available for the synthesis of 7a β pyrrolizidine alkaloids by the same procedures as those described above.

The absolute configuration of $\mathrm{C}(6)$ in the chiral alkylation product 14 was unequivocally established to be R by its conversion to $(R)-(-)$-6-oxo-2-piperidineacetic acid ($\mathbf{3 6 b}$, Scheme IV). Methanolysis of 14 in the presence of solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ in absolute MeOH at room temperature gave the methyl ester $\mathbf{3 6 a}$ in 88% yield. Saponification of $\mathbf{3 6 a}$ in $2 \% \mathrm{NaOH}-\mathrm{MeOH}$ at room temperature for 5 h afforded the carboxylic acid 36b $\mathrm{fmp} 131.5-133.5{ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{EtOAc}^{\mathrm{C}}$) $[\alpha]^{25}{ }_{\mathrm{D}}-19.7^{\circ}(\mathrm{c} 0.38, \mathrm{EtOH})$) in 63% yield. The known (S)-(+)-6-oxo-2-piperidineacetic acid mp $132-134^{\circ} \mathrm{C},[\alpha]^{24} \mathrm{D}+11.3^{\circ}(c 1, \mathrm{EtOH}), \leq 64 \%$ ee $\}$ has been reported and used for the synthesis of (S)-(-)-sedamine and (S)-(-)-allosedamine. ${ }^{24}$ Thus, our synthesized com-

[^5]pound 36 b was determined to be the antipodal compound of (S)-(+)-6-oxo-2-piperidineacetic acid.

Conclusions

We have succeeded in developing an extremely short asymmetric synthesis of the 1 -azabicyclic alkaloids involving pyrrolizidine, indolizidine, and quinolizidine skeletons. The key reaction used is a novel asymmetric alkylation of chiral tin(II) enolates of various 3 -acyl-4(S or R)-IPTTs onto cyclic acyl imines. This particularly mild alkylation procedure is highly general, exhibits high diastereoselectivity, and allows prediction of the absolute stereochemistry of the alkylation products. The alkylation products so obtained are synthetically useful both as important intermediates for the synthesis of bicyclic alkaloids and other nitrogen-containing natural products and as potential chiral auxiliaries for asymmetric reactions.

Experimental Section

General Methods. Melting points were measured on a Yanagimoto apparatus and are uncorrected. Infrared spectra (IR) were recorded on a JASCO A-202 spectrophotometer. Proton nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR) were obtained in the indicated solvents with a JEOL JMN-FX 100 spectrometer (100 MHz) or a JEOL JMN-GX 400 spectrometer (400 MHz); signals are given in ppm using SiMe_{4} as internal standard. Carbon nuclear magnetic resonance spectra (${ }^{13} \mathrm{C}$ NMR) were recorded in the indicated solvents with a JEOL JMN-FX 100 spectrometer (25 MHz); signals are given in ppm with CHCl_{3} as internal standard. Low-resolution mass spectra (MS) and high-resolution mass spectra (HRMS) were obtained on a JEOL JMS-DX 300 mass spectrometer. Combustion analyses were performed by Yanaco CHN corder MT-3. Optical rotations were recorded on a JASCO DIP-181 polarimeter in the indicated solvents. Highperformance liquid chromatography (HPLC) was performed on a Shimadzu LC-4A instrument equipped with a SPD-2AS UV detector using the indicated column.
All reactions were monitored by thin-layer chromatography employing $0.25-\mathrm{mm}$ E. Merck silica gel plates ($60 \mathrm{~F}-254$) with UV light irradiation and 10% ethanolic phosphomolybdic acid heating as detecting methods. Preparative thin-layer chromatography (preparative TLC) was performed on E. Merck silica gel plates ($60 \mathrm{~F} \cdot 254,0.5 \mathrm{~mm} \times 20 \mathrm{~cm} \times 20 \mathrm{~cm}$). Flash column chromatography was carried out on E. Merck silica gel (60, particle size 230-400 mesh). "Workup" indicates drying over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtration, and concentration in vacuo. THF and toluene were distilled from sodium benzophenone ketyl under N_{2}. N Ethylpiperidine, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were distilled from CaH_{2}. Absolute MeOH and EtOH were obtained by treatment with sodium metal followed by distillation under N_{2}. All other reagents were used as purchased. $4(S)$ - and $4(R)$-isopropyl-1,3-thiazolidine-2-thione [4(S)- or 4(R)-IPTT] were prepared according to our reported method. ${ }^{8}$ Tin trifluoromethanesulfonate was prepared according to the literature procedures. ${ }^{25} 5$-Acet-oxy-2-pyrrolidinone was obtained through a known procedure. ${ }^{12}$
Preparation of Compounds 3. Method A. To a suspension of $60 \% \mathrm{NaH}(0.546 \mathrm{~g}, 13.64 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a solution of $4(S)$ - or $4(R)$-IPTT (1 or $2,2.00 \mathrm{~g}, 12.40$ mmol) in dry THF (10 mL). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min , and acyl chloride (13.64 mmol) was injected into the solution, which was stirred at $0^{\circ} \mathrm{C}$ for 10 min and then at room temperature for 1-1.5 h. Hydrochloric acid (5\%) was added, and the mixture was extracted with EtOAc, washed with brine, and worked up. The crude product was purified by flash column chromatography (elution with 10% EtOAc in hexane for $3 \mathbf{a}, \mathbf{c}, \mathbf{e}, \mathbf{f}$, or with $17 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane for $3 \mathrm{~d}, \mathrm{~g}$) to afford the corresponding product 3.
3-Acetyl-4(S)-isopropyl-1,3-dithiazolidine-2-thione (3a): Compound 3 a was prepared according to the reported method. ${ }^{898}$

[^6]3-(4-Chlorobutyryl)-4(S)-isopropyl-1,3-thiazolidine-2thione (3c): 95% yield from 1 and 4 -chlorobutyryl chloride as a yellow oil; IR (CHCl_{3}) 1690, 1360, 1313, 1255, 1164, and 1140 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.97$ and $1.06(6 \mathrm{H}, \mathrm{d}, J=$ 7.0 Hz), $2.00-2.56(3 \mathrm{H}, \mathrm{m}), 3.03(1 \mathrm{H}, \mathrm{dd}, J=1.5,11.2 \mathrm{~Hz}), 3.39$ ($1 \mathrm{H}, \mathrm{dd}, J=7.1,11.0 \mathrm{~Hz}$), $3.44-3.70(4 \mathrm{H}, \mathrm{m}), 5.16(1 \mathrm{H}$, ddd, $J=1.5,6.3,7.8 \mathrm{~Hz}) ; \mathrm{MS}, m / z 265\left(\mathrm{M}^{+}\right), 230,202,162,118(100)$, 105; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NOS}_{2} \mathrm{Cl}$ MW 265.0362, found m / z 265.0363 (M^{+}). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NOS}_{2} \mathrm{Cl}: \mathrm{C}, 45.18 ; \mathrm{H}, 6.07$; N, 5.27. Found: C, 45.05; H, 6.03; N, 5.75 .

3-(5-Chlorovaleryl)-4(S)-isopropyl-1,3-thiazolidine-2thione (3d): 96% yield from 1 and 5 -chlorovaleryl chloride as a yellow oil; IR $\left(\mathrm{CHCl}_{3}\right) 1690,1360,1310,1275,1255$, and 1160 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.97$ and $1.06(6 \mathrm{H}, \mathrm{d}, J=$ 7.0 Hz), 1.68 -1.96 ($4 \mathrm{H}, \mathrm{m}$), 2.12-2.56 ($1 \mathrm{H}, \mathrm{m}$), 3.02 ($1 \mathrm{H}, \mathrm{dd}, J$ $=1.4,11.5 \mathrm{~Hz}), 3.52(1 \mathrm{H}, \mathrm{dd}, J=8.0,11.5 \mathrm{~Hz}), 3.12-3.68(4 \mathrm{H}$, $\mathrm{m}), 5.17(1 \mathrm{H}, \mathrm{m})$; MS, $m / z 279\left(\mathrm{M}^{+}\right)$, 244, 202, 162, 118, 91,55 (100); HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NOS}_{2} \mathrm{Cl}$ MW 279.0518, found m / z $279.0535\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NOS}_{2} \mathrm{Cl}: \mathrm{C}, 47.21 ; \mathrm{H}, 6.48$; N, 5.01. Found: C, 47.47; H, 6.57; N, 5.13.

3-Acetyl-4(R)-isopropyl-1,3-thiazolidine-2-thione (3e): 100% yield from 2 and acetyl chloride as a yellow oil. Spectral data of 3 e were identical with those of its enantiomer 3 a except for the optical rotation. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NOS}_{2}$: $\mathrm{C}, 47.26$; H, 6.44; N, 6.89. Found: C, 47.29; H, 6.37; N, 7.01.

3-((Benzyloxy)acetyl)-4(R)-isopropyl-1,3-thiazolidine-2thione (3f): 94% yield from 2 and (benzyloxy)acetyl chloride as a yellow oil; IR $\left(\mathrm{CHCl}_{3}\right) 1705,1365,1260,1175$, and $1110 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 0.98 and $1.05(6 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}$), $2.20-2.54(1 \mathrm{H}, \mathrm{m}), 3.04(1 \mathrm{H}, \mathrm{dd}, J=1.5,11.5 \mathrm{~Hz}$), $3.57(1 \mathrm{H}$, dd, $J=7.8,11.7 \mathrm{~Hz}), 4.64(2 \mathrm{H}, \mathrm{s}), 4.97$ and $5.04(2 \mathrm{H}, \mathrm{ABq}, J$ $=16.5 \mathrm{~Hz}), 5.16(1 \mathrm{H}, \mathrm{m}), 7.28-7.48(5 \mathrm{H}, \mathrm{m}) ; \mathrm{MS}, m / z 309\left(\mathrm{M}^{+}\right)$, 218, 203, 162, 118, 91 (100); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}_{2}$ MW 309.0857, found $m / z 309.0850\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}_{2}$: C, 58.22; H, 6.19; N, 4.53. Found: C, 57.86; H, 6.09; N, 5.04.

3-(5-Chlorovaleryl)-4(R)-isopropyl-1,3-thiazolidine-2thione (3 g): 96% yield from 2 and 5 -chlorovaleryl chloride as a yellow oil. Spectral data of 3 g were identical with those of its enantiomer 3d except for the optical rotation. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NOS}_{2} \mathrm{Cl}: \mathrm{C}, 47.21 ; \mathrm{H}, 6.48$; $\mathrm{N}, 5.01$. Found: C, 47.20; H, 6.30; N, 5.12.

Method B. 3-((Phenylthio)acetyl)-4(S)-isopropyl-1,3-thiazolidine-2-thione (3b): To a mixture of $1(1.38 \mathrm{~g}, 8.55 \mathrm{mmol})$ and (phenylthio) acetic acid ($2.16 \mathrm{~g}, 12.83 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) precooled at $0^{\circ} \mathrm{C}$ was added a solution of DCC $(2.64 \mathrm{~g}$, $12.83 \mathrm{mmol})$ and DMAP ($0.156 \mathrm{~g}, 1.28 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ mL). The whole mixture was stirred at room temperature for 11 h . The precipitate was filtered off through Celite, and the filtrate was condensed and purified by flash column chromatography (elution with 14% EtOAc in hexane) to give $2.34 \mathrm{~g}(88 \%)$ of 3 b as yellow prisms: IR $\left(\mathrm{CHCl}_{3}\right) 1685,1580,1288,1155$, and $1140 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.96$ and $1.04(6 \mathrm{H}, \mathrm{d}$, $J=7.0 \mathrm{~Hz}), 2.16-2.52(1 \mathrm{H}, \mathrm{m}), 3.01(1 \mathrm{H}, \mathrm{dd}, J=1.5,11.7 \mathrm{~Hz})$, $3.49(1 \mathrm{H}, \mathrm{dd}, J=8.3,11.7 \mathrm{~Hz}), 4.70(2 \mathrm{H}, \mathrm{s}), 5.10(1 \mathrm{H}, \mathrm{ddd}, J$ $=1.5,6.4,7.8 \mathrm{~Hz}$), 7.16-7.52 (5 H, m); MS, $m / z 311\left(\mathrm{M}^{+}\right), 226$, 202 (100), 162, 150, 123, 118, 105, 69; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{17}$ NOS $_{3}$ MW 311.0488, found $m / z 311.0494\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NOS}_{3}: \mathrm{C}, 53.98 ; \mathrm{H}, 5.50 ; \mathrm{N}, 4.50$. Found: C, $54.19 ; \mathrm{H}, 5.43$; N, 4.48.

6-Acetoxy-2-piperidinone ($5, n=2$): A solution of 6 -eth-oxy-2-piperidinone ${ }^{13}(2.0 \mathrm{~g})$ in acetic acid (70 mL) was stirred at $30^{\circ} \mathrm{C}$ for 24 h and then under slightly reduced pressure at $30^{\circ} \mathrm{C}$ for another 24 h . Acetic acid was carefully removed in vacuo below $40^{\circ} \mathrm{C}$ (water bath temperature) to give an oily residue. Diethyl ether (100 mL) was added to the oily residue, and the precipitate was collected by filtration to afford 1.06 g of 6 -acetoxy- 2 piperidinone (ca. 90% pure by ${ }^{1} \mathrm{H}$ NMR analysis). The filtrate was condensed to give 0.955 g of an oily residue that contained mainly 3,4 -dihydro-2-pyridone ${ }^{13}$ from 6 -acetoxy-2-piperidinone by elimination of acetic acid; IR $\left(\mathrm{CHCl}_{3}\right) 3400,1725,1675,1660$ (sh), 1235, 1190, and $990 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.48-2.20(4 \mathrm{H}, \mathrm{m}), 2.07(3 \mathrm{H}, \mathrm{s}), 2.20-2.60(2 \mathrm{H}, \mathrm{m}), 5.80(1 \mathrm{H}$, m), 6.96 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$).

General Procedure for Generation of Chiral Tin(II) Enolate 4. Method A (for Enolates 4a,e). Tin(II) trifluoromethanesulfonate ($0.90 \mathrm{~g}, 2.16 \mathrm{mmol}$) was dissolved in dry THF
(5 mL) under argon atmosphere at room temperature. To the solution cooled at $-50^{\circ} \mathrm{C}$ in a dry ice-acetonitrile bath was added successively N-ethylpiperidine ($0.34 \mathrm{~mL}, 2.49 \mathrm{mmol}$) and 3 -acetyl-4(S)-IPTT ($3 \mathrm{a}, 0.338 \mathrm{~g}, 1.66 \mathrm{mmol}$) in dry THF (1.5 mL), and the mixture was then stirred for 3 h between -50 and -40 ${ }^{\circ} \mathrm{C}$ to form the $\operatorname{tin}(\mathrm{II})$ enolate 4 a .
Method B (for Enolates $\mathbf{4 c , d , g}$). Tin(II) trifluoromethanesulfonate ($2.16 \mathrm{~g}, 5.18 \mathrm{mmol}$) was dissolved in dry THF (10 mL) under argon atmosphere at room temperature. To the solution cooled at $-5^{\circ} \mathrm{C}$ in an ice-brine bath was added successively N-ethylpiperidine ($0.79 \mathrm{~mL}, 5.70 \mathrm{mmol}$) and 3 -(5 -chloro-valeryl)-4(S)-IPTT (3 d) ($0.728 \mathrm{~g}, 2.60 \mathrm{mmol}$) in dry THF (4 mL), and the mixture was then stirred for 4 h between -5 and $0{ }^{\circ} \mathrm{C}$ to form the $\operatorname{tin}(\mathrm{II})$ enolate 4 d .

Method C (for Enolates 4b,f). Tin(II) trifluoromethanesulfonate ($1.31 \mathrm{~g}, 3.14 \mathrm{mmol}$) was dissolved in dry THF (7 mL) under argon atmosphere at room temperature. To the solution cooled at $-78^{\circ} \mathrm{C}$ in a dry ice-acetone bath was added successively 3 -[(benzyloxy)acetyl]-4(R)-IPTT (3f, $0.749 \mathrm{~g}, 2.42 \mathrm{mmol}$) in dry THF (5 mL) and N-ethylpiperidine ($0.50 \mathrm{~mL}, 3.63 \mathrm{mmol}$), and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min to form the $\operatorname{tin}(\mathrm{II})$ enolate 4 f .

General Procedure for Alkylation of Compound 5 ($n=$ 1,2) with Chiral Tin(II) Enolate 4. To the tin(II) enolate 4 (2.0 mmol), prepared from 3 as described above, was added a ca. 1.0 M solution of 5 -acetoxy-2-pyrrolidinone ($5, n=1,3.0 \mathrm{mmol}$) or a ca. 0.8 M solution of 6 -acetoxy-2-piperidinone ($5, n=2,3.0$ mmol) in dry THF at $-5^{\circ} \mathrm{C}$, and the mixture was then stirred for 2 h between -5 and $0^{\circ} \mathrm{C}$. The reaction mixture was poured into a mixture of phosphate buffer solution ($\mathrm{pH} 7.0,50 \mathrm{~mL}$) and EtOAc (50 mL) with vigorous stirring. After the precipitate was filtered off through Celite and washed with EtOAc $(3 \times 50 \mathrm{~mL})$, the combined filtrate was washed with brine and then submitted to workup to provide a crude product. A sample of the crude product was submitted to HPLC analysis ${ }^{26}$ (column, Diasil 5C 184.6 mm i.d. $\times 25 \mathrm{~cm}$; eluent, $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}=9: 1$; flow rate, 1.0 $\mathrm{mL} / \mathrm{min}$; detection, UV 305 nm) to determine diastereomeric excess (see Table II). Flash column chromatography of the crude product (elution with 33% EtOAc in CHCl_{3} for compounds 7, 9-11, and 15, 50% EtOAc in CHCl_{3} for compounds 8, 13, and 14, or $67 \% \mathrm{EtOAc}$ in CHCl_{3} for compounds 6 and 12) afforded the pure products 6-15 ${ }^{27}$ (see Table II). Data for compounds 6-15 are reported as follows.
3-((5-Oxo-2(S)-pyrrolidinyl)acetyl)-4(S)-isopropyl-1,3-thiazolidine-2-thione (6): yellow oil; IR (CHCl_{3}) 3340,1690 (br), 1255 , and $1175 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.98$ and 1.06 ($6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}$), $1.68-2.08(1 \mathrm{H}, \mathrm{m}), 2.18-2.60(4 \mathrm{H}, \mathrm{m}), 3.04$ ($1 \mathrm{H}, \mathrm{dd}, J=1.5,11.5 \mathrm{~Hz}$), $3.18(1 \mathrm{H}, \mathrm{dd}, J=9.8,17.8 \mathrm{~Hz}$), 3.57 ($1 \mathrm{H}, \mathrm{dd}, J=8.0,11.5 \mathrm{~Hz}$), $3.78(1 \mathrm{H}, \mathrm{dd}, J=3.5,17.8 \mathrm{~Hz}$), 3.96-4.28 ($1 \mathrm{H}, \mathrm{m}$), $5.20(1 \mathrm{H}$, ddd, $J=1.5,6.0,8.0 \mathrm{~Hz}$), 6.28 (1 H, br s); MS, $m / z 286\left(\mathrm{M}^{+}\right), 253,161,149,118,84$; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ MW 286.0808, found $m / z 286.0808\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}: \mathrm{C}, 50.32 ; \mathrm{H}, 6.33 ; \mathrm{N}, 9.78$. Found: C, 50.46; H, 6.48; N, 9.19.

3-(2(R)-(5-Ox0-2(S)-pyrrolidinyl)(phenylthio)acetyl)-4(S)-isopropyl-1,3-thiazolidine-2-thione (7): yellow needles;

[^7]IR $\left(\mathrm{CHCl}_{3}\right) 3425,1688(\mathrm{br}), 1580,1245$, and $1160 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.93$ and $1.02(6 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}$), $2.00-2.60$ ($5 \mathrm{H}, \mathrm{m}$), $2.94(1 \mathrm{H}, \mathrm{dd}, J=1.0,11.5 \mathrm{~Hz}$), $3.22(1 \mathrm{H}, \mathrm{dd}, J=7.0$, 11.5 Hz), $4.00-4.28(1 \mathrm{H}, \mathrm{m}), 4.75(1 \mathrm{H}, \mathrm{br}$ t, $J=7.0 \mathrm{~Hz}$), 6.22 (1 $\mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 7.18-7.60(5 \mathrm{H}, \mathrm{m}) ; \mathrm{MS}, m / z 395\left(\mathrm{M}^{+}+1\right)$, $361,310,285,202,161,150,118,84$ (100), 59. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{3}$: C, $54.79 ; \mathrm{H}, 5.62 ; \mathrm{N}, 7.10$. Found: C, 54.88; H , 5.61; N, 7.09.

3-(2(R)-(5-0x0-2(S)-pyrrolidinyl)-4-chlorobutyryl)-4(S)-isopropyl-1,3-thiazolidine-2-thione (8): yellow needles; IR (CHCl_{3}) $3420,3350,1685(\mathrm{br}), 1360,1300,1246,1175$, and 1150 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.97$ and $1.07(6 \mathrm{H}, \mathrm{d}, J=$ $6.8 \mathrm{~Hz}), 1.80-2.52(7 \mathrm{H}, \mathrm{m}), 3.05(1 \mathrm{H}, \mathrm{dd}, J=1.0,11.5 \mathrm{~Hz})$, 3.36-3.76 ($3 \mathrm{H}, \mathrm{m}$), 4.04-4.28 ($1 \mathrm{H}, \mathrm{m}$), 5.00-5.22 ($2 \mathrm{H}, \mathrm{m}$), 6.28 ($1 \mathrm{H}, \mathrm{br}$ s); MS, $m / z 348\left(\mathrm{M}^{+}\right), 315,264,162,110,84$ (100). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Cl}: \mathrm{C}, 48.19 ; \mathrm{H}, 6.07$; N, 8.03. Found: C 47.92; H, 5.99; N, 7.98 .

3-(2(R)-(5-Oxo-2(S)-pyrrolidinyl)-5-chlorovaleryl)-4-(S)-isopropyl-1,3-thiazolidine-2-thione (9): yellow needles; IR (CHCl_{3}) $3425,3365,1688(\mathrm{br}), 1245,1172$, and $1156 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.97$ and $1.06(6 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}$), $1.56-2.56(9 \mathrm{H}, \mathrm{m}), 3.05(1 \mathrm{H}, \mathrm{brd}, J=11.2 \mathrm{~Hz}), 3.40-3.68(3 \mathrm{H}$ m), $3.96-4.24(1 \mathrm{H}, \mathrm{m}), 4.90-5.08(1 \mathrm{H}, \mathrm{m}), 5.14(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}), 6.34\left(1 \mathrm{H}, \mathrm{br}\right.$ s); MS, $m / z 362\left(\mathrm{M}^{+}\right), 329,278,173,162$ 118, 110, 84 (100). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Cl}: \mathrm{C}, 49.64$; H, 6.39; N, 7.72. Found: C, 49.52; H, 6.25; N, 7.65.

3-(2(R)-(6-Oxo-2(S)-piperidinyl)-4-chlorobutyryl)-4(S)-isopropyl-1,3-thiazolidine-2-thione (10): yellow needles; IR (CHCl_{3}) 3355,1652 (br), 1246, 1177, and $1150 \mathrm{~cm}^{-1}$, ${ }^{1} \mathrm{H}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.96$ and $1.06(6 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 1.50-2.16$ ($5 \mathrm{H}, \mathrm{m}$), 2.16-2.60 ($4 \mathrm{H}, \mathrm{m}$), $3.04(1 \mathrm{H}, \mathrm{dd}, J=1.0,11.5 \mathrm{~Hz}$), $3.30-3.74(3 \mathrm{H}, \mathrm{m}), 3.80-4.02(1 \mathrm{H}, \mathrm{m}), 4.93(1 \mathrm{H}, \mathrm{ddd}, J=2.3$, $3.3,10.5 \mathrm{~Hz}), 5.07(1 \mathrm{H}$, br t, $J=7.0 \mathrm{~Hz}), 6.34(1 \mathrm{H}$, br s); MS, $\mathrm{m} / \mathrm{z} 362\left(\mathrm{M}^{+}\right), 329,264,173,161,124,118$ (100), 98. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Cl}: \mathrm{C}, 49.64 ; \mathrm{H}, 6.39 ; \mathrm{N}, 7.72$. Found: C, 49.72; H, 6.40; N, 7.69

3-(2(R)-(6-0xo-2(S)-piperidinyl)-5-chlorovaleryl)-4(S)-isopropyl-1,3-thiazolidine-2-thione (11): yellow oil; IR (CHCl_{3}) $3370,1723,1650,1240,1172,1160$, and $1148 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.99$ and $1.09(6 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 1.50-2.16(7$ $\mathrm{H}, \mathrm{m}), 2.16-2.68(4 \mathrm{H}, \mathrm{m}), 3.09(1 \mathrm{H}, \mathrm{dd}, J=1.0,11.0 \mathrm{~Hz}), 3.40-3.70$ $(3 \mathrm{H}, \mathrm{m}), 3.72-3.98(1 \mathrm{H}, \mathrm{m}), 4.76-4.98(1 \mathrm{H}, \mathrm{m}), 5.16(1 \mathrm{H}, \mathrm{br}$ $\mathrm{t}, J=7.0 \mathrm{~Hz}), 6.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \mathrm{MS}, m / z 376\left(\mathrm{M}^{+}\right), 343,320,278$, 243, 187, 161, 118, 98 (100); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Cl}$ MW 376.1051, found $m / z 376.1054\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Cl}: \mathrm{C}, 50.98 ; \mathrm{H}, 6.68$; N, 7.43. Found: C, $51.02 ; \mathrm{H}$, 6.74; N, 7.43

3-((5-Oxo-2(R)-pyrrolidinyl)acetyl)-4(R)-isopropyl-1,3-thiazolidine-2-thione (12): yellow oil. Spectral data of 12 were identical with those of its enantiomer 6 except for the optical rotation. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, $50.32 ; \mathrm{H}, 6.33 ; \mathrm{N}$, 9.78. Found: C, $50.37 ; \mathrm{H}, 6.38 ; \mathrm{N}, 9.46$.

3-(2(S)-(5-Oxo-2(R)-pyrrolidinyl)(benzyloxy)acetyl)-4(\boldsymbol{R})-isopropyl-1,3-thiazolidine-2-thione (13): yellow needles; IR (CHCl_{3}) 3425,1688 (br), 1359,1245 , and $1170 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90$ and $0.99(6 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 2.00-2.52$ $(5 \mathrm{H}, \mathrm{m}), 2.88(1 \mathrm{H}, \mathrm{dd}, J=1.5,11.5 \mathrm{~Hz}), 3.17(1 \mathrm{H}, \mathrm{dd}, J=7.8$, $11.2 \mathrm{~Hz}), 3.96-4.20(1 \mathrm{H}, \mathrm{m}), 4.48$ and $4.68(2 \mathrm{H}, \mathrm{ABq}, J=12.2$ $\mathrm{Hz}), 4.81(1 \mathrm{H}, \mathrm{m}), 5.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.08(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}), 7.34$ $(5 \mathrm{H}, \mathrm{s})$; MS, $m / z 392\left(\mathrm{M}^{+}\right), 359,320,301,284,218,162,118,91$ (100); HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ MW 392.1219, found m / z $392.1214\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}: \mathrm{C}, 58.14 ; \mathrm{H}, 6.16$; N, 7.14. Found: C, $58.13 ; \mathrm{H}, 6.19 ; \mathrm{N}, 7.25$.

3-((6-Oxo-2(R)-piperidinyl)acetyl)-4(R)-isopropyl-1,3-thiazolidine-2-thione (14): yellow prisms; $\mathbb{R}\left(\mathrm{CHCl}_{3}\right) 3375,1675$, 1643 , and $1172 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.98$ and 1.07 ($6 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}$), 1.40-2.16 ($4 \mathrm{H}, \mathrm{m}$), 2.16-2.56 ($3 \mathrm{H}, \mathrm{m}$), 3.04 ($1 \mathrm{H}, \mathrm{dd}, J=1.0,11.2 \mathrm{~Hz}$), $3.21(1 \mathrm{H}, \mathrm{dd}, J=10.3,18.1 \mathrm{~Hz}$), 3.58 ($1 \mathrm{H}, \mathrm{dd}, J=7.8,11.2 \mathrm{~Hz}$), $3.65(1 \mathrm{H}, \mathrm{dd}, J=2.9,18.1 \mathrm{~Hz}$), $3.80-4.16(1 \mathrm{H}, \mathrm{m}), 5.16$ (1 H, ddd, $J=1.0,6.5,7.5 \mathrm{~Hz}$), 6.45 (1 $\mathrm{H}, \mathrm{br} s) ; \mathrm{MS}, m / z 300\left(\mathrm{M}^{+}\right), 267,202,161,118,111,98$ (100), 83 ; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ MW 300.0996, found $m / z 300.1010$ $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}: \mathrm{C}, 51.97 ; \mathrm{H}, 6.71 ; \mathrm{N}, 9.32$. Found: C, $51.92 ; \mathrm{H}, 6.56$; N, 9.29 .

3-(2(S)-(6-Oxo-2(R)-piperidinyl)-5-chlorovaleryl)-4(R)-isopropyl-1,3-thiazolidine-2-thione (15): yellow oil. Spectral
data of 15 were identical with those of its enantiomer 11 except for the optical rotation. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Cl}$: C, 50.98 ; H, 6.68; N, 7.43. Found: C, 51.24; H, 6.82; N, 7.20
General Procedure for Reductive Annulation of Compounds $8-11$ and 15. (-)-Trachelanthamidine (17a) and 2(S)-(1-hydroxy-2(R)-butyl)pyrrolidine (19a): To a suspension of $\mathrm{LiAlH}_{4}\left(71 \mathrm{mg}, 1.87 \mathrm{mmol}\right.$) in dry THF (4 mL) cooled at $0^{\circ} \mathrm{C}$ under N_{2} was added a yellow solution of compound 8 (163 mg , 0.467 mmol) in dry THF (4 mL). The original yellow color of the solution immediately disappeared. After stirring at $0{ }^{\circ} \mathrm{C}$ for 5 min , the mixture was heated under reflux for 2 h . The reaction mixture was recooled to $0^{\circ} \mathrm{C}$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The etheral mixture was successively treated with $68 \mu \mathrm{~L}$ of water, 68 $\mu \mathrm{L}$ of 3 N aqueous NaOH solution, and $97 \mu \mathrm{~L}$ of water and then stirred at room temperature for 30 min . The resultant precipitate was filtered off through Celite and washed with $10 \% \mathrm{Et}_{3} \mathrm{~N}$ in THF $(4 \times 25 \mathrm{~mL})$. The combined filtrate was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed to give a crude product (158 mg), which was submitted to preparative TLC developing with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N}$ (1:1:1) to afford $29 \mathrm{mg}(44 \%)$ of (-)-trachelanthamidine (17 a) and $6.8 \mathrm{mg}(10 \%)$ of the byproduct 19 a . 17a: pale yellow oil; IR (CHCl_{3}) $3320,3100,1448,1090$, and 1050 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.50-2.04(7 \mathrm{H}, \mathrm{m}), 2.52(1$ $\mathrm{H}, \mathrm{dt}, J=5.86,9.76 \mathrm{~Hz}), 2.59(1 \mathrm{H}, \mathrm{dt}, J=10.74,6.35 \mathrm{~Hz}), 2.96$ ($1 \mathrm{H}, \mathrm{dt}, J=10.74,6.35 \mathrm{~Hz}$), 3.14 (1 H , ddd, $J=3.42,6.84,10.26$ $\mathrm{Hz}), 3.22(1 \mathrm{H}, \mathrm{dd}, J=6.35,13.67 \mathrm{~Hz}), 3.59(2 \mathrm{H}, \mathrm{dd}, J=0.98$, $6.35 \mathrm{~Hz}), 4.00\left(1 \mathrm{H}, \mathrm{br}\right.$ s, exchangeable by $\left.\mathrm{D}_{2} \mathrm{O}\right)$; MS, $m / z 141\left(\mathrm{M}^{+}\right)$, 124, $110,83,82,55$; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{15}$ NO MW 141.1165, found $m / z 141.1167\left(\mathrm{M}^{+}\right)$. 19a: pale yellow oil; IR $\left(\mathrm{CHCl}_{3}\right) 3350$ (br) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.96(3 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}$), 1.10-1.44 ($2 \mathrm{H}, \mathrm{m}$), 1.52-2.40 ($7 \mathrm{H}, \mathrm{m}$), 3.08-3.36 ($1 \mathrm{H}, \mathrm{m}$), 3.52-3.94 ($2 \mathrm{H}, \mathrm{m}$), $5.50-6.20$ ($2 \mathrm{H}, \mathrm{br} \mathrm{s}$, exchangeable by $\mathrm{D}_{2} \mathrm{O}$); MS, m / z 143 (M^{+}), 70 (100). Preparative TLC for compounds 17b-d, 19b, 19d, 21, and 23 was done on silica gel plates using $\mathrm{CHCl}_{3}-$ $\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N}$ (4:2:1) for developing.
($5 R, 6 S$)-1-Aza-5-(hydroxymethyl)bicyclo[4.3.0]nonane ($\left(-\right.$-tashiromine ${ }^{28}$) (17b): pale yellow oil; IR $\left(\mathrm{CHCl}_{3}\right) 3630,3350$, $3320,1460,1440,1162,1085$, and $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (100 MHz , CDCl_{3}) $\delta 0.84-2.46(13 \mathrm{H}, \mathrm{m}), 2.96-3.26(2 \mathrm{H}, \mathrm{m}), 3.46(1 \mathrm{H}, \mathrm{dd}$, $J=5.8,10.5 \mathrm{~Hz}), 3.66(1 \mathrm{H}, \mathrm{dd}, J=4.3,10.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (25 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 20.8, 25.2, 27.7, 29.1, 44.6, 52.8, 54.2, 65.5, 66.5; MS, $m / z 155\left(\mathrm{M}^{+}\right), 154,138,124,97,96,83,69 ;$ HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}$ MW 155.1305, found $m / z 155.1304\left(\mathrm{M}^{+}\right)$.
($4 \boldsymbol{R}, \mathbf{5 S}$)-1-Aza-7-(hydroxymethyl)bicyclo[4.3.0]nonane (17c): pale yellow oil; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3625,3350,3200(\mathrm{sh}), 1450$, 1440 , and $1080 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.05-2.36$ (12 $\mathrm{H}, \mathrm{m}), 2.80-3.38\left(3 \mathrm{H}, \mathrm{m}\right.$, one of them is exchangeable by $\left.\mathrm{D}_{2} \mathrm{O}\right)$, $3.63(2 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR ($25 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.3,25.2$, $25.4,30.4,46.1,53.1,53.4,64.6,67.4$; MS, $m / z 155\left(\mathrm{M}^{+}\right), 154,138$, 124, 97, 96, 69; HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{17}$ NO MW 155.1315; found $m / z 155.1316\left(\mathrm{M}^{+}\right)$.
(-)-Epilupinine (17d): colorless needles; IR $\left(\mathrm{CHCl}_{3}\right) 3615$, 3325 (sh), $3150,1465,1440,1108$, and $1085 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.96-2.24(15 \mathrm{H}, \mathrm{m}), 2.68-2.98(2 \mathrm{H}, \mathrm{m}), 3.52(1$ $\mathrm{H}, \mathrm{dd}, J=4.8,11.0 \mathrm{~Hz}$), $3.68(1 \mathrm{H}, \mathrm{dd}, J=3.3,11.0 \mathrm{~Hz}$); MS, $m / z 169\left(\mathrm{M}^{+}\right), 168,152(100), 138,124,97,83$. Anal. Caled for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 70.96 ; \mathrm{H}, 11.31 ; \mathrm{N}, 8.27$. Found: C, 70.58; H, 11.19; N, 8.20.
$(+)$-Epilupinine (21): colorless needles. Spectra data of 21 were identical with those of its enantiomer 17d except for the optical rotation. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}$: $\mathrm{C}, 70.96 ; \mathrm{H}, 11.31$; N, 8.27. Found: C, 70.87; H, 11.44; N, 8.19.

2(S)-(1-Hydroxy-2(R)-pentyl)pyrrolidine (19b): pale yellow oil; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3300 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.91$ (3 $\mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}$), $1.06-2.44(9 \mathrm{H}, \mathrm{m}), 2.88-4.12(5 \mathrm{H}, \mathrm{m}), 4.56-5.24$ ($2 \mathrm{H}, \mathrm{s}$, exchangeable by $\mathrm{D}_{2} \mathrm{O}$); MS, $m / z 157\left(\mathrm{M}^{+}\right), 70(100)$.

2(S)-(1-Hydroxy-2(R)-pentyl)piperidine (19d): pale yellow oil; IR $\left(\mathrm{CHCl}_{3}\right) 3300 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90(3$ $\mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}$), $1.02-2.05(11 \mathrm{H}, \mathrm{m}), 2.05-3.80(5 \mathrm{H}, \mathrm{m}), 4.00-4.70$ (2 H , br s, exchangeable by $\mathrm{D}_{2} \mathrm{O}$); MS, $m / z 171\left(\mathrm{M}^{+}\right), 141,112$, 98, 84 (100), 83,70 ; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{21}$ NO MW 171.1612, found $m / z 171.1610\left(\mathrm{M}^{+}\right)$.

2(R)-(1-Hydroxy-2(S)-pentyl)piperidine (23): pale yellow oil. Spectral data of 23 were identical with those of its enantiomer 19d.

General Procedure for Acetylation of Compounds 17a-d, 19a,b,d, 21, and 23. To a solution of the substrate in dry THF (ca. 0.1 M) cooled at $0^{\circ} \mathrm{C}$ was added acetyl chloride (3 mol equiv for 17a-d and 21; 4 mol equiv for $19 \mathrm{a}, \mathrm{b}, \mathrm{d}$, and 23) and triethylamine (3 mol equiv for $17 \mathrm{a}-\mathrm{d}$ and $21 ; 4$ mol equiv for 19a,b,d and 23) followed by stirring at room temperature for 4-24 h . The reaction mixture was diluted with EtOAc, and the resultant precipitate was filtered off through Celite. The filtrate was condensed to give a crude product, which was purified by preparative TLC ($\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N}$ (5:1:1) for $18 \mathrm{a} ; \mathrm{CHCl}_{3}-\mathrm{Et}$ $\mathrm{OAc}^{2} \mathrm{Et}_{3} \mathrm{~N}$ (4:1:1) for 18b,c; $\mathrm{CHCl}_{3}-\mathrm{EtOAc}^{2} \mathrm{Et}_{3} \mathrm{~N}$ (10:1:1) for 18d and 22; $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{COCH}_{3}(5: 1)$ for 20a,b,d and 24) to afford the corresponding monoacetyl and diacetyl derivatives in 70-80\% yields, respectively.
(4R,5S)-1-Aza-4-(acetoxymethyl)bicyclo[3.3.0]octane (18a): pale yellow oil; IR (CHCl_{3}) 1735, 1365,1230 (br), 1035 , and 905 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.36-2.10(7 \mathrm{H}, \mathrm{m}), 2.06(3$ $\mathrm{H}, \mathrm{s}), 2.40-2.74(2 \mathrm{H}, \mathrm{m}), 2.86-3.38(3 \mathrm{H}, \mathrm{m}), 4.02(1 \mathrm{H}, \mathrm{dd}, J=$ $6.4,11.0 \mathrm{~Hz}$), $4.16\left(1 \mathrm{H}, \mathrm{dd}, J=6.4,11.0 \mathrm{~Hz}\right.$); MS, $m / z 183\left(\mathrm{M}^{+}\right)$, $149,124,83,60,44$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{2}$ MW 183.1256, found $m / z 183.1255\left(\mathrm{M}^{+}\right)$.
($5 \boldsymbol{R}, 6 \boldsymbol{S}$)-1-Aza-5-(acetoxymethyl)bicyclo[4.3.0]nonane (18b): pale yellow oil; IR (CHCl_{3}) 1725, 1365, 1240 (br), 1220 (sh), and $1035 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.80-2.66(12 \mathrm{H}$, $\mathrm{m}), 2.06(3 \mathrm{H}, \mathrm{s}), 2.92-3.24(2 \mathrm{H}, \mathrm{m}), 3.80-4.20(2 \mathrm{H}, \mathrm{m}) ; \mathrm{MS}, m / z$ $197\left(\mathrm{M}^{+}\right), 138,122,97,40$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{MW}$ 197.1399, found $m / z 197.1395\left(\mathrm{M}^{+}\right)$.
(4R,5S)-1-Aza-7-(acetoxymethyl)bicyclo[4.3.0]nonane (18c): pale yellow oil; IR $\left(\mathrm{CHCl}_{3}\right) 1730,1373,1365,1240,1220$ (sh), and $1035 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.06-2.64$ (12 $\mathrm{H}, \mathrm{m}), 2.06(3 \mathrm{H}, \mathrm{s}), 2.94-3.20(2 \mathrm{H}, \mathrm{m}), 3.96-4.18(2 \mathrm{H}, \mathrm{m})$; MS, $m / z 197\left(\mathrm{M}^{+}\right), 196,154,138,97$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{2}$ MW 197.1414, found $m / z 197.1413\left(\mathrm{M}^{+}\right)$.
($5 R, 6 S$)-1-Aza-5-(acetoxymethyl)bicyclo[4.4.0]decane (18d): pale yellow oil; IR $\left(\mathrm{CHCl}_{3}\right) 1730,1365,1240,1220$ (sh), 1113 , and $905 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.90-2.32$ (14 $\mathrm{H}, \mathrm{m}), 2.06(3 \mathrm{H}, \mathrm{s}), 2.68-2.94(2 \mathrm{H}, \mathrm{m}), 3.84-4.26(2 \mathrm{H}, \mathrm{m})$; MS, $m / z 211\left(\mathrm{M}^{+}\right), 152,149,110,97 ;$ HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{2}$ MW 211.1550 , found $m / z 211.1544\left(\mathrm{M}^{+}\right)$.
(5S,6R)-1-Aza-5-(acetoxymethyl)bicyclo[4.4.0]decane (22): pale yellow oil. Spectral data of 22 were identical with those of its enantiomer 18d.

1-Acetyl-2(S)-(1-acetoxy-2(R)-butyl)pyrrolidine (20a): pale yellow oil; IR (CHCl_{3}) 1725 and $1620 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.98(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.10-1.50(2 \mathrm{H}, \mathrm{m})$, $1.76-2.60(7 \mathrm{H}, \mathrm{m}), 2.04(3 \mathrm{H}, \mathrm{s}), 2.06(3 \mathrm{H}, \mathrm{s}), 3.30-3.60(1 \mathrm{H}, \mathrm{m})$, 3.94-4.30 ($2 \mathrm{H}, \mathrm{m}$); MS, $m / z 227\left(\mathrm{M}^{+}\right), 208,193,158,112,70,44$ (100); HRMS caled for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{3}$ MW 227.1523, found m / z 227.1522 (M^{+}).

1-Acetyl-2(S)-(1-acetoxy-2(R)-pentyl)pyrrolidine (20b): pale yellow oil; IR $\left(\mathrm{CHCl}_{3}\right) 1725,1625,1240$, and $1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.94(3 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 1.04-1.60$ $(3 \mathrm{H}, \mathrm{m}), 1.72-2.70(6 \mathrm{H}, \mathrm{m}), 2.04(3 \mathrm{H}, \mathrm{s}), 2.06(3 \mathrm{H}, \mathrm{m}), 3.20-3.60$ (3 H, m), 3.92-4.12 ($2 \mathrm{H}, \mathrm{m}$); MS, $m / z 241\left(\mathrm{M}^{+}\right), 213,181,112$, 70; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{3}$ MW 241.1649, found $m / z 241.1648$ $\left(\mathrm{M}^{+}\right)$.

1-Acetyl-2(S)-(1-acetoxy-2(R)-pentyl)piperidine (20d): pale yellow oil; IR (CHCl_{3}) $1730,1630,1230$, and $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90(3 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 1.04-2.00$ $(11 \mathrm{H}, \mathrm{m}), 2.08(3 \mathrm{H}, \mathrm{s}), 2.11(3 \mathrm{H}, \mathrm{s}), 2.88-3.20(1 \mathrm{H}, \mathrm{m}), 3.50-3.86$ ($1 \mathrm{H}, \mathrm{m}$), 4.04-4.20 ($2 \mathrm{H}, \mathrm{m}$), 4.46-4.84 ($1 \mathrm{H}, \mathrm{m}$); MS, $m / z 255$ $\left(\mathrm{M}^{+}\right), 240,212,152,126(100), 84$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{3}$ MW 255.1853, found $m / z 255.1859\left(\mathrm{M}^{+}\right)$.

1-Acetyl-2(R)-(1-acetoxy-2(S)-pentyl)piperidine (24): pale yellow oil. Spectral data of 24 were identical with those of its enantiomer 20d.

Methyl (S)-5-oxo-2-pyrrolidineacetate (25a): A mixture of $6(0.667 \mathrm{~g}, 2.33 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.20 \mathrm{~g}, 1.45 \mathrm{mmol})$ in absolute $\mathrm{MeOH}(30 \mathrm{~mL})$ was stirred at room temperature for 30 min (the original yellow color of the solution disappeared). The solid was filtered off through Celite, and the filtrate was condensed in vacuo to give a residue. Flash column chromatography (elution with $67 \% \mathrm{EtOAc}$ in CHCl_{3}) of the residue yielded $0.347 \mathrm{~g}(95 \%)$ of 25 a as colorless prisms: $\mathrm{mp} 64-64.5^{\circ} \mathrm{C}$ (recrystallized from $\mathrm{Et}_{2} \mathrm{O}$); $[\alpha]^{21} \mathrm{D}+21.1^{\circ}(c 0.54, \mathrm{EtOH})$; IR $\left(\mathrm{CHCl}_{3}\right) 3425,1730,1690$, and $1078 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.60-2.00(1 \mathrm{H}, \mathrm{m})$,
2.16-2.68 ($5 \mathrm{H}, \mathrm{m}$), 3.71 ($3 \mathrm{H}, \mathrm{s}$), 3.86-4.18 ($1 \mathrm{H}, \mathrm{m}$), 6.38 (1 H , br s); MS, $m / z 157\left(\mathrm{M}^{+}\right), 129,115,84$ (100), 55, 41. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{3}$: C, $53.49 ; \mathrm{H}, 7.05 ; \mathrm{N}, 8.91$. Found: $\mathrm{C}, 53.43 ; \mathrm{H}$, 7.10; N, 9.07 .

Ethyl (S)-5-oxo-2-pyrrolidineacetate (25b): A mixture of $6(0.576 \mathrm{~g}, 2.01 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.60 \mathrm{~g}, 4.34 \mathrm{mmol})$ in absolute $\mathrm{EtOH}(10 \mathrm{~mL})$ was stirred at room temperature for 12 h (the original yellow color of the solution disappeared). The solid was filtered off through Celite, and the filtrate was condensed in vacuo to give a residue. Flash column chromatographic separation (elution with 20% acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) of the residue yielded 0.265 $\mathrm{g}(77 \%)$ of 25 b as a colorless oil: $[\alpha]^{25}+14.8^{\circ}(c 1.06, \mathrm{EtOH})$; IR $\left(\mathrm{CHCl}_{3}\right) 3420,1720,1685$, and $1080 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.27(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.50-2.00(1 \mathrm{H}, \mathrm{m}), 2.00-2.68$ $(5 \mathrm{H}, \mathrm{m}), 3.80-4.00(1 \mathrm{H}, \mathrm{m}), 4.17(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}), 6.45(1$ $\mathrm{H}, \mathrm{br} \mathrm{s})$; MS, $m / z 171\left(\mathrm{M}^{+}\right), 143,84$; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{3}$ MW 171.0911, found $m / z 171.0914\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{3}$: $\mathrm{C}, 56.13 ; \mathrm{H}, 7.65 ; \mathrm{N}, 8.18$. Found: C, $56.20 ; \mathrm{H}, 7.64$; N, 8.40.
(S)-5-Oxo-2-pyrrolidineacetic acid (26): A mixture of 25a ($120 \mathrm{mg}, 0.76 \mathrm{mmol}$) in $\mathrm{MeOH}(1.5 \mathrm{~mL})$ and 3 N aqueous NaOH $(1.5 \mathrm{~mL})$ was stirred at room temperature for 18 h . The reaction mixture was acidified with $5 \% \mathrm{HCl}$, and the solvent was completely removed. Extraction of the residue with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by removed of the solvent gave $70 \mathrm{mg}(64 \%)$ of 26 as colorless prisms: $\mathrm{mp} 100.5-101.5^{\circ} \mathrm{C}$ (recrystallized from $\mathrm{CHCl}_{3}-\mathrm{EtOAc}$); $[\alpha]^{21} \mathrm{D}+21.6^{\circ}(c \quad 0.41, \mathrm{EtOH})\left[\right.$ litt ${ }^{18} \mathrm{mp} 103-105^{\circ} \mathrm{C} ;[\alpha]^{36}{ }_{\mathrm{D}}+17.6^{\circ}$ (EtOH)]; IR (CHCl_{3}) 3290, 2500 (br), 1920 (br), 1700 (br), 1670 (sh), and $1650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.50-2.00(1$ $\mathrm{H}, \mathrm{m}), 2.08-2.82(5 \mathrm{H}, \mathrm{m}), 3.90-4.24(1 \mathrm{H}, \mathrm{m}), 7.94(2 \mathrm{H}, \mathrm{br} \mathrm{s})$; MS, $m / z 143\left(\mathrm{M}^{+}\right), 115,84$ (100), 55, 41. Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NO}_{3}$: C, $50.35 ; \mathrm{H}, 6.34 ; \mathrm{N}, 9.79$. Found: C, $50.02 ; \mathrm{H}, 6.29$; N, 9.73.

Methyl (S)-1-methyl-5-oxo-2-pyrrolidineacetate (28): To a suspension of $60 \% \mathrm{NaH}(33 \mathrm{mg}, 0.81 \mathrm{mmol})$ in dry DMF (0.5 mL) was added a solution of $26(58 \mathrm{mg}, 0.405 \mathrm{mmol})$ in dry DMF (0.5 mL) at $0^{\circ} \mathrm{C}$ followed by stirring at room temperature for 20 \min. Methyl iodide ($76 \mu \mathrm{~L}, 1.22 \mathrm{mmol}$) was added, and the mixture was stirred at room temperature for 6 h . The reaction mixture was acidified with $5 \% \mathrm{HCl}$ and evaporated in vacuo to give a residue, which was extracted with CHCl_{3}. After evaporation of the CHCl_{3} extract, the crude product was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in ether. Preparative TLC of the crude methyl ester and development with 20% acetone in CHCl_{3} afforded 34.1 mg (49%) of 28 as a colorless oil: $[\alpha]^{22} \mathrm{D}-40.0^{\circ}\left(c 1.14\right.$, EtOH) [lit. ${ }^{18}[\alpha]^{23} \mathrm{D}$ $\left.-40.1^{\circ}(\mathrm{EtOH})\right]$; IR $\left(\mathrm{CHCl}_{3}\right) 1730$ and $1675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.60-2.00(1 \mathrm{H}, \mathrm{m}), 2.16-2.72(5 \mathrm{H}, \mathrm{m}), 2.81(3 \mathrm{H}$, s), $3.72(3 \mathrm{H}, \mathrm{s}), 3.80-4.08(1 \mathrm{H}, \mathrm{m})$; MS, $m / z 171\left(\mathrm{M}^{+}\right), 128,98$ (100), 70, 53; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{3}$ MW 171.0867, found $m / z 171.0914\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{3}: \mathrm{C}, 56.13 ; \mathrm{H}, 7.65$; N, 8.18. Found: C, $56.09 ;$ H, 7.58; N, 8.40 .

Ethyl (S)-5-thioxo-2-pyrrolidineacetate (29): To a solution of $25 \mathrm{~b}(0.20 \mathrm{~g}, 1.17 \mathrm{mmol})$ in dry toluene (3 mL) was added 2,4-bis(4-methoxyphenyl)-1,3-dithia-2,4-diphosphatane 2,4-disulfide ($0.251 \mathrm{~g}, 0.62 \mathrm{mmol}$), and the mixture was then refluxed for 1 h under argon atmosphere. Removal of the solvent and flash column chromatography of the residue using 33% EtOAc in hexane gave $0.19 \mathrm{~g}(87 \%)$ of 29 as a pale yellow oil: $[\alpha]^{25} \mathrm{D}+91.6^{\circ}$ (c 0.74, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) 3375,1720,1495$, and $1015 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.28(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$), $1.60-2.14$ ($1 \mathrm{H}, \mathrm{m}$), 2.24-2.78 ($3 \mathrm{H}, \mathrm{m}$), 2.80-3.10 ($2 \mathrm{H}, \mathrm{m}$), $4.00-4.50(3 \mathrm{H}$, m), $8.58(1 \mathrm{H}, \mathrm{br} \mathrm{s})$; MS, $m / z 187\left(\mathrm{M}^{+}\right), 115,100(100)$; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}$ MW 187.0673, found $m / z 187.0675$ (M^{+}). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 51.31 ; \mathrm{H}, 7.00 ; \mathrm{N}, 7.48$. Found: C, 51.36; H, 6.95; N, 7.78.

Ethyl (S)-1-((ethoxycarbonyl)methyl)-2-pyrrolidineacetate (31): To a solution of $\mathrm{Et}_{3} \mathrm{OBF}_{4}(207 \mathrm{mg}, 1.09 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $29(157 \mathrm{mg}, 0.838 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ followed by stirring at $0^{\circ} \mathrm{C}$ for 5 min and then at room temperature for 3 h . The reaction mixture was recooled to $0^{\circ} \mathrm{C}$, a solution of $95 \% \mathrm{NaBH}_{3} \mathrm{CN}(222 \mathrm{mg}, 3.35 \mathrm{mmol})$ in $\mathrm{MeOH}(2.3 \mathrm{~mL})$ and $\mathrm{AcOH}(0.2 \mathrm{~mL})$ was added, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then at room temperature for another 2 h . After removal of the solvent, the residue was dissolved in $\mathrm{EtOH}(20 \mathrm{~mL})$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~g})$ and ethyl bromoacetate ($0.14 \mathrm{~mL}, 1.26 \mathrm{mmol}$) were added. The mixture was
stirred at room temperature for 20.5 h and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solid was filtered off through Celite and the filtrate was condensed to give a crude product. Flash column chromatography (elution with 20% EtOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 170 mg (83%) of 31 as a colorless oil: $[\alpha]^{25} \mathrm{D}-58.0^{\circ}\left(c 1.21, \mathrm{CHCl}_{3}\right)$ [lit. ${ }^{21 a}$ $[\alpha]^{25}$ D -56.9° (c 1.13, $\left.\left.\mathrm{CHCl}_{3}\right)\right]$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 1720,1180$, and 1020 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.26(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.27$ ($3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$), $1.44-2.70(8 \mathrm{H}, \mathrm{m}), 2.88-3.32(1 \mathrm{H}, \mathrm{m}), 3.26$ and $3.53(2 \mathrm{H}, \mathrm{ABq}, J=17.1 \mathrm{~Hz}), 4.13(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}), 4.18$ ($2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}$); MS, $m / z 243\left(\mathrm{M}^{+}\right), 170,156,128 ;$ HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{4}$ MW 243.1489, found $m / z 243.1495$ (M^{+}). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{4}: \mathrm{C}, 59.24 ; \mathrm{H}, 8.70 ; \mathrm{N}, 5.76$. Found: C, 59.36; H, 8.65; N, 5.94 .

Methyl (R)-6-oxo-2-piperidineacetate (36a): A mixture of 14 ($151 \mathrm{mg}, 0.50 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(35 \mathrm{mg}, 0.25 \mathrm{mmol})$ in absolute $\mathrm{MeOH}(4 \mathrm{~mL}$) was stirred at room temperature for 30 min (the original yellow color of the solution disappared). The solid was filtered off through Celite, and the filtrate was condensed in vacuo to give a residue. Preparative TLC (elution with 33% acetone in CHCl_{3}) of the residue yielded $75 \mathrm{mg}(88 \%)$ of 36 a as colorless prisms: mp $87-88{ }^{\circ} \mathrm{C}$ (recrystallized from $\mathrm{Et}_{2} \mathrm{O}$); $[\alpha]^{21} \mathrm{D}-14.1^{\circ}$ (c 0.41, EtOH); IR $\left(\mathrm{CHCl}_{3}\right) 3375,1725,1653$, and $1078 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.20-2.10(4 \mathrm{H}, \mathrm{m}), 2.20-2.58(4 \mathrm{H}, \mathrm{m})$, $3.71(3 \mathrm{H}, \mathrm{s}), 3.60-4.00(1 \mathrm{H}, \mathrm{m}), 6.32(1 \mathrm{H}, \mathrm{br} \mathrm{s})$; MS, $m / z 171$ (M^{+}), 143, 115, 98 (100), 55. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{3}$: C, 56.13 ; H, 7.65; N, 8.18. Found: C, 56.22; H, 7.71; N, 8.26.
(R)-6-Ox0-2-piperidineacetic acid (36b): A solution of 36a ($34.5 \mathrm{mg}, 0.202 \mathrm{mmol}$) in $\mathrm{MeOH}(0.5 \mathrm{~mL}$) and 2% aqueous NaOH (0.5 mL) was stirred at room temperature for 5 h . The reaction mixture was acidified with $5 \% \mathrm{HCl}$, and the solvent was completely removed. Extraction of the residue with CHCl_{3}, washing with brine, and the usual workup gave $20 \mathrm{mg}(63 \%)$ of $\mathbf{3 6 b}$ as
colorless needles: mp $131.5-133.5^{\circ} \mathrm{C}$ (recrystallized from $\left.\mathrm{CHCl}_{3}-\mathrm{EtOAc}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}-19.7^{\circ}(\mathrm{c} 0.38, \mathrm{EtOH})\left[\mathrm{lit}{ }^{24}(\mathrm{~S})\right.$-form ($\leq 64 \%$ ee) $\mathrm{mp} 132-134{ }^{\circ} \mathrm{C}$; $\left[\alpha{ }^{24} \mathrm{D}+11.3^{\circ}\right.$ (c 1, EtOH)]; IR (CHCl_{3}) 3280 , 2450 (br), 1930 (br), 1705 (br), and 1620 (br) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.14-2.20(4 \mathrm{H}, \mathrm{m}), 2.20-2.76(4 \mathrm{H}, \mathrm{m}), 3.80-4.16$ $(1 \mathrm{H}, \mathrm{m}), 7.20-8.10(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.26(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \mathrm{MS}, m / z 157\left(\mathrm{M}^{+}\right)$, $139,129,101,98,70,55$ (100).

Acknowledgment. We are grateful to Professor M. Benn, The University of Calgary, for sending us an authentic sample of the chiral diester 31 and to Professor M. Ikeda, Kyoto Pharmaceutical University, for providing us with the spectral data of (-)-trachelanthamidine (17a). We also thank Dr. S. Aoyagi, Tokyo College of Pharmacy, for his technical assistance in the preparation of some pyrrolidinone derivatives.

Registry No. 1, 76186-04-4; 2, 110199-16-1; 3a, 101979-45-7; 3b, 124201-69-0; 3c, 111975-21-4; 3d, 111975-22-5; 3e, 121929-87-1; 3f, 121929-88-2; 3g, 124201-70-3; (\pm)-5 $n=1,111975-27-0$; (\pm)-5 $n=2,111975-28-1 ; 6,121929-83-7 ; 7,124201-72-5 ; 8$, 111975-23-6; 9, 111975-24-7; 10, 111975-25-8; 11, 111975-26-9; 12, 121929-84-8; 13, 121929-85-9; 14, 124201-73-6; 15, 112065-91-5; 17a, 526-64-7; 17b, 111975-29-2; 17c, 111975-30-5; 17d, 112065-89-1; 18a, 62912-97-4; 18b, 111975-35-0; 18c, 111975-36-1; 18d, 112065-90-4; 19a, 111975-31-6; 19b, 111975-32-7; 19d, 111975-34-9; 20a, 111975-37-2; 20b, 111975-38-3; 20d, 111975-40-7; 21, 486-71-5; 22, 71657-68-6; 23, 111975-41-8; 24, 124201-74-7; 25a, 67036-44-6; 25b, 124201-75-8; 26, 61884-75-1; 28, 61884-76-2; 29, 124201-76-9; 31, 83455-90-7; 36a, 67036-45-7; 36b, 65084-15-3; (土)-6-ethoxy-2piperidinone, 124201-71-4; 3,4-dihydro-2-pyridone, 57147-25-8.

General Method for the Synthesis of Bridged Indole Alkaloids. Nucleophilic Addition of Indoleacetic Ester Enolates to \boldsymbol{N}-Alkylpyridinium Salts

M.-Lluiisa Bennasar, Mercedes Alvarez, Rodolfo Lavilla, Ester Zulaica, and Joan Bosch*
Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona-08028, Spain

$$
\text { Received July 6, } 1989
$$

A short route to tetracyclic ring substructures of C-mavacurine, Strychnos, and akuammiline-type alkaloids, based on the addition of methyl $1-, 2$-, or 3 -indoleacetate anions to N-alkylpyridinium salts followed by acid cyclization of the resultant 1,4 -dihydropyridines, is reported. Further stereoselective elaboration of the C-20 (E)-ethylidene substituent results in the synthesis of the indole alkaloid vinoxine ($7 \mathbf{b}$) and of 4 -ethylidene-hexahydro-1,5-methanoazocino $[4,3-b]$ - and - $[3,4-b]$ indoles $14-17,32$, and 35 . Some mechanistic aspects concerning the regiochemistry of the nucleophilic addition to the pyridinium ring are discussed.

The development of general methods for the synthesis of indole alkaloids has been a longtime goal for organic synthesis chemists. ${ }^{1}$ The main group of indole alkaloids biogenetically derives from tryptophan and secologanin, ${ }^{2}$ geissoschizine being a key early intermediate: oxidative cyclization between $\mathrm{C}-16^{3}$ and the indole 3 -position (C-7)

[^8]gives formylstrictamine, from which the alkaloids of the akuammiline group are formed; similarly, oxidative ring closure between $\mathrm{C}-16$ and the indole nitrogen affords the alkaloids of the C-mavacurine group. The hydrolytic cleavage of the tryptamine bridge would explain the formation of the tetracyclic alkaloid vinoxine. A skeletal rearrangement (cleavage of $\mathrm{C}-7 / \mathrm{C}-16$ and $\mathrm{C}-2 / \mathrm{C}-3$ bonds and formation of $\mathrm{C}-3 / \mathrm{C}-7$ and $\mathrm{C}-2 / \mathrm{C}-16$ bonds) interconnects formylstrictamine with Strychnos alkaloids (Scheme I).

Despite their apparent skeletal dissimilarity, the indole alkaloids of the C-mavacurine, Strychnos, and akuammiline groups have some common structural features due to their common biogenetic origin: (i) an oxidized onecarbon substituent at $\mathrm{C}-16$ (lost in some cases), (ii) a two-carbon chain, usually an E-configurated ethylidene, at $\mathrm{C}-20$, (iii) a tryptamine $\mathrm{C}-5 / \mathrm{C}-6$ unit connecting the indole 3-position and the piperidine nitrogen, (iv) a bond linking indole and piperidine rings, the latter by an α carbon, and (v) a cis-2,4-disubstituted piperidine ring in-

[^0]: (1) (a) Kyoto University. (b) Japanese Foundation for Cancer Research. (c) Osaka University of Pharmaceutical Sciences.
 (2) Reviews for pyrrolizidine alkaloids, see: (a) Bull, L. B.; Culvenor, C. C. J.; Dick, A. T. The Pyrrolizidine Alkaloids; North-Holland: Amsterdam, 1968. (b) Wröbel, J. T. In The Alkaloids: Chemistry and Pharmacology; Brossi, A., Ed.; Academic Press: New York, 1985; Vol. 26, Chapter 7.
 (3) Reviews for indolizidine alkaloids see: (a) Howard, A. S.; Michael, J. P. In The Alkaloids: Chemistry and Pharmacology; Brossi, A., Ed.; Academic Press: New York, 1986; Vol. 28, Chapter 3. (b) Grundon, M. F. Nat. Prod. Rep. 1985, 2, 235, and earlier references in this series. (4) Zalkow, L. H.; Bonetti, S.; Gelbaum, L. T.; Gordon, M. M.; Patil, B. B.; Shani, A. J. Nat. Prod. 1979, 42, 603, and references therein. (5) (a) Zalkow, L. H.; Glinski, J. A.; Gelbaum, L. T.; Fleischmann, T. J.; Mcgowan, L. S.; Gordon, M. M. J. Med. Chem. 1985, 28, 687, and references therein. (b) A review in Japanese: Chemistry of Pyrrolizidine Alkaloids; Furuya, T.; Hikichi, M. J. Synth. Org. Chem. Jpn. 1977, 35, 653. (c) Suffness, M.; Cordell, G. A. In The Alkaloids: Chemistry and Pharmacology; Brossi, A., Ed.; Academic Press: New York, 1985; Vol. 28, pp 21-38.
 (6) (a) Stevens, R. V. In The Total Synthesis of Natural Products; Apsimon, J., Ed.; Wiley: New York, 1977; Vol. 3, p 439. (b) For recent review papers of pyrrolizidine alkaloids, see: Robins, D. J. Nat. Prod. Rep. 1986, 3, 297, and earlier papers in this series. (c) Ikeda, M.; Sato, T.; Ishibashi, H. Heterocycles 1988, 27, 1465.

[^1]: (7) Nagao, Y.; Dai, W.-M.; Ochiai, M.; Tsukagoshi, S.; Fujita, E. J. Am. Chem. Soc. 1988, 110, 289, and references therein.
 (8) Nagao, Y.; Hagiwara, Y.; Kumagai, T.; Ochiai, M.; Inoue, T.; Hashimoto, K.; Fujita, E. J. Org. Chem. 1986, 51, 2391.

[^2]: (10) For chiral α-amidoalkylation of optically active N-acyliminium with achiral nucleophiles, see: Wanner, K. T.; Kartner, A. Heterocycles 1987, 26, 921.
 (11) (a) Rodewald, W. J.; Morzycki, J. W. Tetrahedron Lett. 1978 1077. (b) House, H. O. Morden Synthetic Reactions, 2nd ed.; W. A. Benjamin: CA, 1977; p 79.
 (12) Nagasaka, T.; Abe, M.; Ozawa, N.; Kosugi, Y.; Hamaguchi, F. Heterocycles 1983, $20,985$.
 (13) Prepared from 6-ethoxy-2-piperidinone, see: Hubert, J. C.; Wijnberg, J. B. P. A.; Speckamp, W. N. Tetrahedron 1975, 31, 1437.

[^3]: (14) Iwasawa, N.; Mukaiyama, T. Chem. Lett. 1983, 297.

[^4]: (16) Tsuda, Y.; Marion, L. Can. J. Chem. 1963, 41, 1919
 (17) White, E. P. N. Z. J. Sci. Technol. 1951, 33B, 50.
 (18) Wakabayashi, T.; Kato, Y.; Watanabe, K. Chem. Lett. 1976, 1283. This compound has recently been used for the synthesis of γ-lactam antibiotics; see: Allen, N. E.; Boyd, D. B.; Campbell, J. B.; Deeter, J. B. Elzey, T. K.; Foster, B. J.; Hatfield, L. D.; Hobbs, J. N., Jr.; Hornback W. J.; Hunden, D. C.; Jones, N. D.; Kinnick, M. D.; Morin, J. M., Jr. Munroe, J. E.; Swartzendruber, J. K.; Vogt, D. G. Tetrahedron 1989, 45, 1905.
 (19) Wakabayashi, T.; Watanabe, K.; Kato, Y. Synth. Commun. 1977, 7, 239.
 (20) Buchschacher, P.; Cassal, J.-M.; Furst, A.; Meier, W. Helv. Chim. Acta 1977, 60, 2747
 (21) (a) Rueger, H.; Benn, M. Heterocycles 1982, 19, 1677. (b) Rüeger H.; Benn, M. Heterocycles 1983, 20, 235

[^5]: (22) Scheibye, S.; Pederson, B. S.; Lawesson, S. O. Bull. Soc. Chim. Belg. 1978, 87, 229.
 (23) (a) Niwa, H.; Miyachi, Y.; Okamoto, O.; Uosaki, Y.; Yamada, K. Tetrahedron Lett. 1986, 27, 4605. (b) Niwa, H.; Okamoto, O.; Miyachi, Y.; Uosaki, Y.; Yamada, K. J. Org. Chem. 1987, 52, 2941.
 (24) Wakabayashi, T.; Watanabe, K.; Kato, Y.; Saito, M. Chem. Lett. 1977, 223.

[^6]: (25) (a) Batchelor, R. J.; Ruddick, J. N. R.; Sams, J. R.; Aubke, F. Inorg. Chem. 1977, 16, 1414. (b) Iwasawa, N.; Mukaiyama, T. J. Synth. Org. Chem. Jpn. 1986, 71.

[^7]: (26) For assignment of the peaks due to the related diastereomers on the HPLC chart, each corresponding authentic diastereomeric mixture of the alkylation products was prepared as follows: The pure compounds 6-11, 13, and 14 were subjected to alkaline hydrolysis in $10 \% \mathrm{KOH}-$ $\mathrm{MeOH}(1: 2)$ at room temperature for $10-60 \mathrm{~min}$ to give the corresponding carboxylic acids with racemization at the α position of the carboxy group in the cases of compounds 7-11 and 13. Then, dehydrative condensation of the carboxylic acids with racemic IPTT in the presence of DCCDMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature furnished each corresponding diastereomeric mixture of the 3 -acyl-4-IPTT amides, respectively. These samples were submitted to HPLC analysis for calculation of the diastereomeric excess of each major alkylation product.
 (27) The isolated compounds $6 \mathbf{- 1 5}$ were checked for diastereomeric purity by HPLC analysis.
 (28) After our asymmetric synthesis, a new indolizidine alkaloid, tashiromine, has very recently been isolated from the fresh stems of Maackia tashiroi (Leguminosae) together with seven lupin alkaloids including (+)-epilupinine. However, the absolute stereochemistry of the natural tashiromine still remains unknown; see: Kubo, H.; Ohmiya, S.; Otomasu, H.; Saito, K.; Murakoshi, I., presented at the 109th Annual Meeting of the Pharmaceutical Society of Japan, Nagoya, Japan, Apr 4-6, 1989; abstr papers III, p 225.

[^8]: (1) (a) Wenkert, E. Pure Appl. Chem. 1981, 53, 1271. (b) Magnus, P.; (1) (a) Wenkert, E. Pure Appl. Chem. 1981, 53, 1271. (b) Magnus, P.;
 Gallagher, T.; Brown, P.; Pappalardo, P. Acc. Chem. Res. 1984, 17, 35. (c) Speckamp, W. N.; Hiemstra, H. Tetrahedron 1985, 41, 4367. (d) Overman, L. E.; Angle, S. R. J. Org. Chem. 1985, 50, 4021. (e) Kuehne, M. E.; Zebovitz, T. C. J. Org. Chem. 1987, 52, 4331, and previous papers in this series.
 (2) (a) Bisset, N. G. In Indoles and Biogenetically Related Alkaloids; Phillipson, J. D., Zenk, M. H., Eds.; Academic Press: London, 1980; Chapter 3. (b) Herbert, R. B. In The Chemistry of Heterocyclic Compounds. Indoles Part 4, The Monoterpenoid Indole Alkaloids; Saxton, J. E., Ed.; Wiley: New York, 1983; Chapter 1. (c) Atta-ur-Rahman; Basha, A. Biosynthesis of Indole Alkaloids; Clarendon Press: Oxford, 1983.
 (3) The biogenetic numbering is used throughout this paper for all tetracyclic compounds. Le Men, J.; Taylor, W. I. Experientia 1965, 21, 508.

